EC2023 SOLID STATE ELECTRONIC DEVICES SYLLABUS | ANNA UNIVERSITY BE ECE 6TH SEM SYLLABUS REGULATION 2008 2011 2012-2013 BELOW IS THE ANNA UNIVERSITY SIXTH SEMESTER BE
ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT SYLLABUS, TEXTBOOKS, REFERENCE BOOKS,EXAM PORTIONS,QUESTION BANK,CLASS NOTES, IMPORTANT 2 MARKS, 8 MARKS, 16 MARKS TOPICS. IT IS APPLICABLE FOR ALL STUDENTS ADMITTED IN THE YEAR 2011 2012-2013 (ANNA UNIVERSITY CHENNAI,TRICHY,MADURAI,TIRUNELVELI,COIMBATORE), 2008 REGULATION OF ANNA UNIVERSITY CHENNAI AND STUDENTS ADMITTED IN ANNA UNIVERSITY CHENNAI DURING 2009
EC2023 SOLID STATE ELECTRONIC DEVICES L T P C
3 0 0 3
AIM
79
To have fundamental knowledge about structure and V-I characteristics of PN Junction
diode, Zener diode, MOSFET, BJT, Opto electronic devices, high frequency devices and
high power devices.
OBJECTIVES
To learn crystal structures of elements used for fabrication of semiconductor
devices.
To study energy band structure of semiconductor devices.
To understand fermi levels, movement of charge carriers, Diffusion current and Drift
current.
To study behavior of semiconductor junction under different biasing conditions.
Fabrication of different semiconductor devices, Varactor diode, Zener diode,
Schottky diode, BJT, MOSFET, etc.
To study VI Characteristics of devices and ir limitations in factors like current, power
frequency.
To learn photoelectric effect and fabrication of opto electronic devices.
To learn high frequency and high power devices.
UNIT I CRYSTAL PROPERTIES AND GROWTH OF SEMICONDUCTORS 9
Semiconductor materials - Periodic Structures - Crystal Lattices - Cubic lattices - Planes
and Directions - Diamond lattice - Bulk Crystal Growth - Starting Materials - Growth of
Single Crystal lngots - Wafers - Doping - Epitaxial Growth - Lattice Matching in Epitaxial
Growth - Vapor - Phase Epitaxy - Atoms and Electrons - Introduction to Physical Models
- Experimental Observations - Photoelectric Effect - Atomic spectra - Bohr model -
Quantum Mechanics - Probability and Uncertainty Principle - Schrodinger Wave
Equation - Potential Well Equation - Potential well Problem - Tunneling.
UNIT II ENERGY BANDS AND CHARGE CARRIERS IN SEMICONDUCTORS
AND JUNCTIONS 9
Energy bands in Solids, Energy Bands in Metals, Semiconductors, and Insulators -
Direct and Indirect Semiconductors - Variation of Energy Bands with Alloy Composition -
Charge Carriers in Semiconductors - Electrons and Holes - Electrons and Holes in
Quantum Wells - Carrier Concentrations - Fermi Level - Electron and Hole
Concentrations at Equilibrium - Temperature Dependence of Carrier Concentrations -
Compensation and Space Charge Neutrality - Drift of Carrier in Electric and Magnetic
Fields conductivity and Mobility - Drift and Resistance - Effects of Temperature and
Doping on Mobility - High field effects - Hall Effect - invariance of Fermi level at
equilibrium - Fabrication of p-n junctions, Metal semiconductor junctions.
UNIT III METAL OXIDE SEMICONDUCTOR FET 9
GaAS MESFET - High Electron Mobility Transistor - Short channel Effects - Metal
Insulator Semiconductor FET - Basic Operation and Fabrication - Effects of Real
Surfaces - Threshold Voltage - MOS capacitance Measurements - current - Voltage
Characteristics of MOS Gate Oxides - MOS Field Effect Transistor - Output
characteristics - Transfer characteristics - Short channel MOSFET V-I characteristics -
Control of Threshold Voltage - Substrate Bias Effects - Sub threshold characteristics -
Equivalent Circuit for MOSFET - MOSFET Scaling and Hot Electron Effects - Drain -
Induced Barrier Lowering - short channel and Narrow Width Effect - Gate Induced Drain
Leakage.
UNIT IV OPTOELCTRONIC DEVICES 9
Photodiodes - Current and Voltage in illuminated Junction - Solar Cells - Photo detectors
- Noise and Bandwidth of Photo detectors - Light Emitting Diodes - Light Emitting
Materials - Fiber Optic Communications Multilayer Heterojunctions for LEDs - Lasers -
80
Semiconductor lasers - Population Inversion at a Junction Emission Spectra for p-n
junction - Basic Semiconductor lasers - Materials for Semiconductor lasers.
UNIT V HIGH FREQUENCY AND HIGH POWER DEVICES 9
Tunnel Diodes, IMPATT Diode, operation of TRAPATT and BARITT Diodes, Gunn
Diode - transferred - electron mechanism, formation and drift of space charge domains,
p-n-p-n Diode, Semiconductor Controlled Rectifier, Insulated Gate Bipolar Transistor.
TOTAL : 45 PERIODS
TEXT BOOK
1. Ben. G. Streetman & Sanjan Banerjee, Solid State Electronic Devices, 5th Edition,
PHI, 2003.
REFERENCES
1. Donald A. Neaman, Semiconductor Physics and Devices, 3rd Edition, TMH, 2002.
2. Yannis Tsividis, Operation & Mode line of MOS Transistor, 2nd Edition, Oxford
University Press, 1999.
3. Nandita Das Gupta & Aamitava Das Gupta, Semiconductor Devices Modeling a
Technology, PHI, 2004.
3. D.K. Bhattacharya & Rajinish Sharma, Solid State Electronic Devices, Oxford
University Press, 2007.
EC2023 SOLID STATE ELECTRONIC DEVICES L T P C
3 0 0 3
AIM
79
To have fundamental knowledge about structure and V-I characteristics of PN Junction
diode, Zener diode, MOSFET, BJT, Opto electronic devices, high frequency devices and
high power devices.
OBJECTIVES
To learn crystal structures of elements used for fabrication of semiconductor
devices.
To study energy band structure of semiconductor devices.
To understand fermi levels, movement of charge carriers, Diffusion current and Drift
current.
To study behavior of semiconductor junction under different biasing conditions.
Fabrication of different semiconductor devices, Varactor diode, Zener diode,
Schottky diode, BJT, MOSFET, etc.
To study VI Characteristics of devices and ir limitations in factors like current, power
frequency.
To learn photoelectric effect and fabrication of opto electronic devices.
To learn high frequency and high power devices.
UNIT I CRYSTAL PROPERTIES AND GROWTH OF SEMICONDUCTORS 9
Semiconductor materials - Periodic Structures - Crystal Lattices - Cubic lattices - Planes
and Directions - Diamond lattice - Bulk Crystal Growth - Starting Materials - Growth of
Single Crystal lngots - Wafers - Doping - Epitaxial Growth - Lattice Matching in Epitaxial
Growth - Vapor - Phase Epitaxy - Atoms and Electrons - Introduction to Physical Models
- Experimental Observations - Photoelectric Effect - Atomic spectra - Bohr model -
Quantum Mechanics - Probability and Uncertainty Principle - Schrodinger Wave
Equation - Potential Well Equation - Potential well Problem - Tunneling.
UNIT II ENERGY BANDS AND CHARGE CARRIERS IN SEMICONDUCTORS
AND JUNCTIONS 9
Energy bands in Solids, Energy Bands in Metals, Semiconductors, and Insulators -
Direct and Indirect Semiconductors - Variation of Energy Bands with Alloy Composition -
Charge Carriers in Semiconductors - Electrons and Holes - Electrons and Holes in
Quantum Wells - Carrier Concentrations - Fermi Level - Electron and Hole
Concentrations at Equilibrium - Temperature Dependence of Carrier Concentrations -
Compensation and Space Charge Neutrality - Drift of Carrier in Electric and Magnetic
Fields conductivity and Mobility - Drift and Resistance - Effects of Temperature and
Doping on Mobility - High field effects - Hall Effect - invariance of Fermi level at
equilibrium - Fabrication of p-n junctions, Metal semiconductor junctions.
UNIT III METAL OXIDE SEMICONDUCTOR FET 9
GaAS MESFET - High Electron Mobility Transistor - Short channel Effects - Metal
Insulator Semiconductor FET - Basic Operation and Fabrication - Effects of Real
Surfaces - Threshold Voltage - MOS capacitance Measurements - current - Voltage
Characteristics of MOS Gate Oxides - MOS Field Effect Transistor - Output
characteristics - Transfer characteristics - Short channel MOSFET V-I characteristics -
Control of Threshold Voltage - Substrate Bias Effects - Sub threshold characteristics -
Equivalent Circuit for MOSFET - MOSFET Scaling and Hot Electron Effects - Drain -
Induced Barrier Lowering - short channel and Narrow Width Effect - Gate Induced Drain
Leakage.
UNIT IV OPTOELCTRONIC DEVICES 9
Photodiodes - Current and Voltage in illuminated Junction - Solar Cells - Photo detectors
- Noise and Bandwidth of Photo detectors - Light Emitting Diodes - Light Emitting
Materials - Fiber Optic Communications Multilayer Heterojunctions for LEDs - Lasers -
80
Semiconductor lasers - Population Inversion at a Junction Emission Spectra for p-n
junction - Basic Semiconductor lasers - Materials for Semiconductor lasers.
UNIT V HIGH FREQUENCY AND HIGH POWER DEVICES 9
Tunnel Diodes, IMPATT Diode, operation of TRAPATT and BARITT Diodes, Gunn
Diode - transferred - electron mechanism, formation and drift of space charge domains,
p-n-p-n Diode, Semiconductor Controlled Rectifier, Insulated Gate Bipolar Transistor.
TOTAL : 45 PERIODS
TEXT BOOK
1. Ben. G. Streetman & Sanjan Banerjee, Solid State Electronic Devices, 5th Edition,
PHI, 2003.
REFERENCES
1. Donald A. Neaman, Semiconductor Physics and Devices, 3rd Edition, TMH, 2002.
2. Yannis Tsividis, Operation & Mode line of MOS Transistor, 2nd Edition, Oxford
University Press, 1999.
3. Nandita Das Gupta & Aamitava Das Gupta, Semiconductor Devices Modeling a
Technology, PHI, 2004.
3. D.K. Bhattacharya & Rajinish Sharma, Solid State Electronic Devices, Oxford
University Press, 2007.
No comments:
Post a Comment
Any doubt ??? Just throw it Here...