Trending: Anna University 8th Sem Results April 2014 May/June 2014 Time Table/ Internal Marks Calculate CGPA Online SSLC Results 2014 12th Result 2014

Test Footer 1

Thursday, September 13, 2012

EC 2253 ELECTROMAGNETIC FIELDS SYLLABUS | ANNA UNIVERSITY BE ECE ENGINEERING 4TH SEM SYLLABUS REGULATION 2008 2011 2012-2013

Latest: TNEA 2014 Engineering Application Status, Counselling Date, Rank List
EC 2253 ELECTROMAGNETIC FIELDS SYLLABUS | ANNA UNIVERSITY BE ECE ENGINEERING 4TH SEM SYLLABUS REGULATION 2008 2011 2012-2013 BELOW IS THE ANNA UNIVERSITY FOURTH SEMESTER BE ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT SYLLABUS, TEXTBOOKS, REFERENCE BOOKS,EXAM PORTIONS,QUESTION BANK,CLASS NOTES, IMPORTANT 2 MARKS, 8 MARKS, 16 MARKS TOPICS. IT IS APPLICABLE FOR ALL STUDENTS ADMITTED IN THE YEAR 2011 2012-2013 (ANNA UNIVERSITY CHENNAI,TRICHY,MADURAI,TIRUNELVELI,COIMBATORE), 2008 REGULATION OF ANNA UNIVERSITY CHENNAI AND STUDENTS ADMITTED IN ANNA UNIVERSITY CHENNAI DURING 2009


EC 2253 ELECTROMAGNETIC FIELDS L T P C
3 1 0 4
AIM
To familiarize the student to the concepts, calculations and pertaining to electric,
magnetic and electromagnetic fields so that an in depth understanding of antennas,
electronic devices, Waveguides is possible.
OBJECTIVES
 To analyze fields a potentials due to static changes
 To evaluate static magnetic fields
 To understand how materials affect electric and magnetic fields
 To understand the relation between the fields under time varying situations
 To understand principles of propagation of uniform plane waves.
UNIT I STATIC ELECTRIC FIELDS 9
Introduction to Co-ordinate System – Rectangular – Cylindrical and Spherical Coordinate
System – Introduction to line, Surface and Volume Integrals – Definition of Curl,
Divergence and Gradient – Meaning of Stokes theorem and Divergence theorem
Coulomb’s Law in Vector Form – Definition of Electric Field Intensity – Principle of
Superposition – Electric Field due to discrete charges – Electric field due to continuous
charge distribution - Electric Field due to charges distributed uniformly on an infinite and
finite line – Electric Field on the axis of a uniformly charged circular disc – Electric Field
due to an infinite uniformly charged sheet.
Electric Scalar Potential – Relationship between potential and electric field - Potential
due to infinite uniformly charged line – Potential due to electrical dipole - Electric Flux
Density – Gauss Law – Proof of Gauss Law – Applications.
UNIT II STATIC MAGNETIC FIELD 9
The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite
wire carrying a current I – Magnetic field intensity on the axis of a circular and
rectangular loop carrying a current I – Ampere’s circuital law and simple applications.
Magnetic flux density – The Lorentz force equation for a moving charge and applications
– Force on a wire carrying a current I placed in a magnetic field – Torque on a loop
carrying a current I – Magnetic moment – Magnetic Vector Potential.
UNIT III ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9
Poisson’s and Laplace’s equation – Electric Polarization-Nature of dielectric materials-
Definition of Capacitance – Capacitance of various geometries using Laplace’s equation
– Electrostatic energy and energy density – Boundary conditions for electric fields –
Electric current – Current density – point form of ohm’s law – continuity equation for
40
current.Definition of Inductance – Inductance of loops and solenoids – Definition of
mutual inductance – simple examples. Energy density in magnetic fields – Nature of
magnetic materials – magnetization and permeability - magnetic boundary conditions.
UNIT IV TIME VARYING ELECTRIC AND MAGNETIC FIELDS 9
Faraday’s law – Maxwell’s Second Equation in integral form from Faraday’s Law –
Equation expressed in point form.
Displacement current – Ampere’s circuital law in integral form – Modified form of
Ampere’s circuital law as Maxwell’s first equation in integral form – Equation expressed
in point form. Maxwell’s four equations in integral form and differential form.
Poynting Vector and the flow of power – Power flow in a co-axial cable – Instantaneous
Average and Complex Poynting Vector.
UNIT V ELECTROMAGNETIC WAVES 9
Derivation of Wave Equation – Uniform Plane Waves – Maxwell’s equation in Phasor
form – Wave equation in Phasor form – Plane waves in free space and in a homogenous
material.
Wave equation for a conducting medium – Plane waves in lossy dielectrics –
Propagation in good conductors – Skin effect.
Linear, Elliptical and circular polarization – Reflection of Plane Wave from a conductor –
normal incidence – Reflection of Plane Waves by a perfect dielectric – normal and
oblique incidence. Dependence on Polarization. Brewster angle.
TUTORIAL 15 TOTAL : 60 PERIODS
TEXT BOOKS
1. W H.Hayt & J A Buck : “Engineering Electromagnetics” TATA McGraw-Hill, 7th Edition
2007 (Unit I,II,III ).
3. E.C. Jordan & K.G. Balmain “Electromagnetic Waves and Radiating Systems.”
Pearson Education/PHI 4nd edition 2006. (Unit IV, V).
REFERENCES
1. Matthew N.O.Sadiku: “Elements of Engineering Electromagnetics” Oxford
University Press, 4th edition, 2007
2. Narayana Rao, N : “Elements of Engineering Electromagnetics” 6th edition,
Pearson Education, New Delhi, 2006.
3. Ramo, Whinnery and Van Duzer: “Fields and Waves in Communications Electronics”
John Wiley & Sons ,3rd edition 2003.
4. David K.Cheng: “Field and Wave Electromagnetics - Second Edition-Pearson
Edition, 2004.
5. G.S.N. Raju, Electromagnetic Field Theory & Transmission Lines, Pearson
Education, 2006

No comments:

Post a Comment

Any doubt ??? Just throw it Here...