Anna university Syllabus
EC2402 OPTICAL COMMUNICATION AND NETWORKING SYLLABUS | ANNA UNIVERSITY BE ECE 7TH SEMESTER SYLLABUS REGULATION 2008 2011-2012 BELOW IS THE ANNA UNIVERSITY SEVENTH SEMESTER BE ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT SYLLABUS IT IS APPLICABLE FOR ALL STUDENTS ADMITTED IN THE YEAR 2011-2012 (ANNA UNIVERSITY CHENNAI,TRICHY,MADURAI,TIRUNELVELI,COIMBATORE), 2008 REGULATION OF ANNA UNIVERSITY CHENNAI AND STUDENTS ADMITTED IN ANNA UNIVERSITY CHENNAI DURING 2009EC2402 OPTICAL COMMUNICATION AND NETWORKING L T P C 3 0 0 3
AIM To introduce the various optical fiber modes, configurations and various signal
degradation factors associated with optical fiber.
To study about various optical sources and optical detectors and their use in the
optical communication system. Finally to discuss about digital transmission and its
associated parameters on system performance.
OBJECTIVES
To learn the basic elements of optical fiber transmission link, fiber modes
configurations and structures.
To understand the different kind of losses, signal distortion in optical wave guides
and other signal degradation factors. Design optimization of SM fibers, RI profile
and cut-off wave length.
To learn the various optical source materials, LED structures, quantum efficiency,
Laser diodes and different fiber amplifiers.
To learn the fiber optical receivers such as PIN APD diodes, noise performance in
photo detector, receiver operation and configuration.
To learn fiber slicing and connectors, noise effects on system performance,
operational principles WDM and solutions.
UNIT I INTRODUCTION 9
Introduction, Ray theory transmission- Total internal reflection-Acceptance angle –
Numerical aperture – Skew rays – Electromagnetic mode theory of optical propagation –
EM waves – modes in Planar guide – phase and group velocity – cylindrical fibers –
SM fibers.
UNIT II TRANSMISSION CHARACTERISTICS OF OPTICAL FIBERS 9
73
Attenuation – Material absorption losses in silica glass fibers – Linear and Non linear
Scattering losses - Fiber Bend losses – Midband and farband infra red transmission –
Intra and inter Modal Dispersion – Over all Fiber Dispersion – Polarization- non linear
Phenomena. Optical fiber connectors, Fiber alignment and Joint Losses – Fiber Splices
– Fiber connectors – Expanded Beam Connectors – Fiber Couplers.
UNIT III SOURCES AND DETECTORS 9
Optical sources: Light Emitting Diodes - LED structures - surface and edge emitters,
mono and hetero structures - internal - quantum efficiency, injection laser diode
structures - comparison of LED and ILD
Optical Detectors: PIN Photo detectors, Avalanche photo diodes, construction,
characteristics and properties, Comparison of performance, Photo detector noise -Noise
sources , Signal to Noise ratio , Detector response time.
UNIT IV FIBER OPTIC RECEIVER AND MEASUREMENTS 9
Fundamental receiver operation, Pre amplifiers, Error sources – Receiver Configuration
– Probability of Error – Quantum limit.
Fiber Attenuation measurements- Dispersion measurements – Fiber Refractive index
profile measurements – Fiber cut- off Wave length Measurements – Fiber Numerical
Aperture Measurements – Fiber diameter measurements.
UNIT V OPTICAL NETWORKS 9
Basic Networks – SONET / SDH – Broadcast – and –select WDM Networks –
Wavelength Routed Networks – Non linear effects on Network performance –
Performance of WDM + EDFA system – Solitons – Optical CDMA – Ultra High Capacity
Networks.
TOTAL = 45 PERIODS
TEXT BOOKS
1. Optical Fiber Communication – John M. Senior – Pearson Education – Second
Edition. 2007
2. Optical Fiber Communication – Gerd Keiser – Mc Graw Hill – Third Edition. 2000
REFERENCES
1. J.Gower, “Optical Communication System”, Prentice Hall of India, 2001
2. Rajiv Ramaswami, “Optical Networks “ , Second Edition, Elsevier , 2004.
3. Govind P. Agrawal, “ Fiber-optic communication systems”, third edition, John Wiley
& sons, 2004.
4. R.P. Khare, “Fiber Optics and Optoelectronics”, Oxford University Press, 2007.
74
EC2403 RF AND MICROWAVE ENGINEERING L T P C
3 0 0 3
AIM
To enable the student to become familiar with active & passive microwave devices &
components used in Microwave communication systems.
OBJECTIVES
To study about multi- port RF networks and RF transistor amplifiers
To study passive microwave components and their S- Parameters.
To study Microwave semiconductor devices & applications.
To study Microwave sources and amplifiers.
UNIT I TWO PORT RF NETWORKS-CIRCUIT REPRESENTATION 9
Low frequency parameters-impedance ,admittance, hybrid and ABCD. High frequency
parameters-Formulation of S parameters, properties of S parameters-Reciprocal and
lossless networks, transmission matrix, Introduction to component basics, wire, resistor,
capacitor and inductor, applications of RF
UNIT II RFTRANSISTOR AMPLIFIER DESIGN AND MATCHING NETWORKS 9
Amplifier power relation, stability considerations, gain considerations noise figure,
impedance matching networks, frequency response, T and Π matching networks,
microstripline matching networks
UNIT III MICROWAVE PASSIVE COMPONENTS 9
Microwave frequency range, significance of microwave frequency range - applications of
microwaves. Scattering matrix -Concept of N port scattering matrix representation-
Properties of S matrix- S matrix formulation of two-port junction. Microwave junctions -
Tee junctions -Magic Tee - Rat race - Corners - bends and twists - Directional couplers -
two hole directional couplers- Ferrites - important microwave properties and applications
– Termination - Gyrator- Isolator-Circulator - Attenuator - Phase changer – S Matrix for
microwave components – Cylindrical cavity resonators.
UNIT IV MICROWAVE SEMICONDUCTOR DEVICES 9
Microwave semiconductor devices- operation - characteristics and application of BJTs
and FETs -Principles of tunnel diodes - Varactor and Step recovery diodes - Transferred
Electron Devices -Gunn diode- Avalanche Transit time devices- IMPATT and TRAPATT
devices. Parametric devices -Principles of operation - applications of parametric
amplifier .Microwave monolithic integrated circuit (MMIC) - Materials and fabrication
techniques
UNIT V MICROWAVE TUBES AND MEASUREMENTS 9
Microwave tubes- High frequency limitations - Principle of operation of Multicavity
Klystron, Reflex Klystron, Traveling Wave Tube, Magnetron. Microwave measurements:
Measurement of power, wavelength, impedance, SWR, attenuation, Q and Phase shift.
TOTAL = 45 PERIODS
TEXT BOOKS
75
1. Samuel Y Liao, “Microwave Devices & Circuits” , Prentice Hall of India, 2006.
2. Reinhold.Ludwig and Pavel Bretshko ‘RF Circuit Design”, Pearson Education, Inc.,
2006
REFERENCES
1. Robert. E.Collin-Foundation of Microwave Engg –Mc Graw Hill.
2. Annapurna Das and Sisir K Das, “Microwave Engineering”, Tata Mc Graw
Hill Inc., 2004.
3. M.M.Radmanesh , RF & Microwave Electronics Illustrated, Pearson
Education, 2007.
4. Robert E.Colin, 2ed “Foundations for Microwave Engineering”, McGraw Hill, 2001
5. D.M.Pozar, “Microwave Engineering.”, John Wiley & sons, Inc., 2006.
No comments:
Post a Comment
Any doubt ??? Just throw it Here...