Trending: Anna University 8th Sem Results April 2014 May/June 2014 Time Table/ Internal Marks Calculate CGPA Online SSLC Results 2014 12th Result 2014

Test Footer 1

Friday, June 29, 2012

ANNA UNIVERSITY BE ECE 7TH SEMESTER SYLLABUS REGULATION 2008 2011-2012

ANNA UNIVERSITY BE ECE 7TH SEMESTER SYLLABUS REGULATION 2008 2011-2012 BELOW IS THE ANNA UNIVERSITY SEVENTH SEMESTER BE ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT SYLLABUS IT IS APPLICABLE FOR ALL STUDENTS ADMITTED IN THE YEAR 2011-2012 (ANNA UNIVERSITY CHENNAI,TRICHY,MADURAI,TIRUNELVELI,COIMBATORE), 2008 REGULATION OF ANNA UNIVERSITY CHENNAI AND STUDENTS ADMITTED IN ANNA UNIVERSITY CHENNAI DURING 2009

ANNA UNIVERSITY, CHENNAI AFFILIATED INSTITUTIONS R 2008

B.E. ELECTRONICS AND COMMUNICATION ENGINEERING
VII SEMESTERS CURRICULA AND SYLLABI

LIST OF SUBJECTS IN ECE 7TH SEMESTER ANNA UNIVERSITY

SEMESTER VII
(Applicable to the students admitted from the Academic year 2008–2009 onwards)
CODE NO. COURSE TITLE L T P C
THEORY
Elective II 3 0 0 3
Elective III 3 0 0 3
Elective IV 3 0 0 3

PRACTICAL
TOTAL 18 0 6 22


LIST OF ELECTIVE SUBJECTS IN ANNA UNIVERSITY 7TH SEMESTER ECE

SEMESTER VII - Elective II
CODE NO. COURSE TITLE L T P C

SEMESTER VII - Elective III
CODE NO. COURSE TITLE L T P C

SEMESTER VII - Elective IV
CODE NO. COURSE TITLE L T P C

Thursday, June 28, 2012

EC2041 AVIONICS SYLLABUS | ANNA UNIVERSITY BE ECE 7TH SEMESTER SYLLABUS REGULATION 2008 2011-2012


EC2041 AVIONICS SYLLABUS | ANNA UNIVERSITY BE ECE 7TH SEMESTER SYLLABUS REGULATION 2008 2011-2012 BELOW IS THE ANNA UNIVERSITY SEVENTH SEMESTER BE ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT SYLLABUS IT IS APPLICABLE FOR ALL STUDENTS ADMITTED IN THE YEAR 2011-2012 (ANNA UNIVERSITY CHENNAI,TRICHY,MADURAI,TIRUNELVELI,COIMBATORE), 2008 REGULATION OF ANNA UNIVERSITY CHENNAI AND STUDENTS ADMITTED IN ANNA UNIVERSITY CHENNAI DURING 2009
EC2041 AVIONICS L T P C
3 0 0 3
UNIT I INTRODUCTION 9
Introduction to aircraft – Axes system – Parts, importance and role of Avionics – systems
which interface directly with pilot – Aircraft state sensor systems – Navigation systems –
External world sensor systems – task automation systems. Avionics architecture
evolution. Avionics Data buses - MIL STD 1553, ARINC 429, ARINC 629.
UNIT II RADIO NAVIGATION 9
Types of Radio Navigation – ADF, DME, VOR, LORAN, DECCA, OMEGA. ILS, MLS
UNIT III INERTIAL AND SATELLITE NAVIGATION SYSTEMS 9
102
Inertial sensors – Gyroscopes, Accelerometers, Inertial navigation systems – Block
diagram, Platform and strap down INS. Satellite Navigation - GPS
UNIT IV AIR DATA SYSTEMS AND AUTOPILOT 9
Air data quantities – Altitude, Airspeed, Mach no., Vertical speed, Total Air temperature,
Stall warning, Altitude warning. Autopilot – basic principles – longitudinal and lateral
autopilot.
UNIT V AIRCRAFT DISPLAYS 9
Display technologies – LED, LCD, CRT, Flat Panel Display. Primary Flight parameter
displays - Head Up Display, Helmet Mounted Display, Night vision goggles, Head Down
Display, MFD, MFK, Virtual cockpit.
TOTAL= 45 PERIODS
TEXT BOOKS
1. Albert Helfrick. D, ‘Principles of Avionics’, Avionics communications Inc., 2004
2. Collinson, R.P.G, ‘Introduction to Avionics’, Chapman and Hall, 1996.
REFERENCES
1. Middleton, D.H, ‘Avionics Systems’, Longman Scientific and Technical, Longman
Group UK Ltd, England, 1989.
2. Spitzer, C.R. ‘Digital Avionics Systems’, Prentice Hall, Englewood Cliffs, N.J., USA
1993.
3. Spitzer, C.R, ‘The Avionics Handbook’, CRC Press, 2000.
4. Pallet, E.H.J, ‘Aircraft Instruments and Integrated Systems’, Longman Scientific

EC2039 PARALLEL AND DISTRIBUTED PROCESSING SYLLABUS | ANNA UNIVERSITY BE ECE 7TH SEMESTER SYLLABUS REGULATION 2008 2011-2012


EC2039 PARALLEL AND DISTRIBUTED PROCESSING SYLLABUS | ANNA UNIVERSITY BE ECE 7TH SEMESTER SYLLABUS REGULATION 2008 2011-2012 BELOW IS THE ANNA UNIVERSITY SEVENTH SEMESTER BE ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT SYLLABUS IT IS APPLICABLE FOR ALL STUDENTS ADMITTED IN THE YEAR 2011-2012 (ANNA UNIVERSITY CHENNAI,TRICHY,MADURAI,TIRUNELVELI,COIMBATORE), 2008 REGULATION OF ANNA UNIVERSITY CHENNAI AND STUDENTS ADMITTED IN ANNA UNIVERSITY CHENNAI DURING 2009
EC2039 PARALLEL AND DISTRIBUTED PROCESSING L T P C
3 0 0 3
AIM
To learn the concepts of parallel processing and distributed computing bringing out the
differences among various architectures and systems.
OBJECTIVES
i To introduce parallel processing and parallel architectures
II. To introduce the concepts of shared memory based and thread based
implementations.
III. To learn the two modes of distributed computing using message passing and remote
procedure calls.
IV To learn introductory techniques of parallel debugging, and be introduced to other
parallel paradigms.
V. To introduce basic concepts of distributed data bases and distributed operating
systems.
UNIT I INTRODUCTION TO PARALLEL PROCESSING AND PARALLEL
ARCHITECTURES 9
Need and definition of parallel processing, shared memory multiprocessing, Distributed
memory, using parallelism, tools and languages, Parallelism in sequential machines,
Multiprocessor architecture, Pipelining, Array processors.
UNIT II SHARED MEMORY PROGRAMMING AND THREAD BASED
IMPLEMENTATION 9
101
Shared Memory Programming and its general model, Process model under UNIX,
Thread management, Example with threads, Attributes of Threads, Mutual Exclusion
with threads and Thread implementation..
UNIT III DISTRIBUTED COMPUTING – MESSAGE PASSING AND RPC
MODEL 9
Message-passing model, General model, programming model, PVM, Remote procedure
calls (RPC), Parameter passing, JAVA Remote Method Invocation, Distributed
computing environment(DCE), Developing Applications in DCE.
UNIT IV DEBUGGING PARALLEL PROGRAMS AND
OTHER PARALLELISM PARADIGMS 9
Debugging Techniques, Debugging Message passing parallel programs and shared
memory parallel programs, Dataflow computing, systolic architectures, functional and
logic paradigms, distributed shared memory.
UNIT V DISTRIBUTED DATABASES AND DISTRIBUTED OPERATING
SYSTEMS 9
Reasons for and objectives of distributed databases, issues and systems, distribution
options, concurrency control, DDBMS structure. Need for Distributed operating systems,
network operating systems, distributed OS, Goals of DOS and Design issues.
TOTAL: 45 PERIODS
TEXT BOOKS
1. M.Sasikumar, D.Shikhare and P. Ravi Prakash, “Introduction to Parallel
processing”.PHI 2006.
2. Rajaraman, C. Siva Ram Murthy, “Parallel computers: Architecture and
programming”, PHI 2006.
REFERENCES
1. Harry F. Jordan, Gita Alaghband, “Fundamentals of parallel processing”, PHI 2006.
2. Quinn, M.J., “Designing Efficient Algorithms for Parallel Computers”, McGraw
-Hill, 1995.
3. Culler, D.E., “Parallel Computer Architecture”, A Hardware – Software approach,
Harcourt Asia Pte. Ltd., 1999

EC2038 NANO ELECTRONICS SYLLABUS | ANNA UNIVERSITY BE ECE 7TH SEMESTER SYLLABUS REGULATION 2008 2011-2012


EC2038 NANO ELECTRONICS SYLLABUS | ANNA UNIVERSITY BE ECE 7TH SEMESTER SYLLABUS REGULATION 2008 2011-2012 BELOW IS THE ANNA UNIVERSITY SEVENTH SEMESTER BE ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT SYLLABUS IT IS APPLICABLE FOR ALL STUDENTS ADMITTED IN THE YEAR 2011-2012 (ANNA UNIVERSITY CHENNAI,TRICHY,MADURAI,TIRUNELVELI,COIMBATORE), 2008 REGULATION OF ANNA UNIVERSITY CHENNAI AND STUDENTS ADMITTED IN ANNA UNIVERSITY CHENNAI DURING 2009
EC2038 NANO ELECTRONICS L T P C
3 0 0 3
UNIT I INTRODUCTION TO NANOTECHNOLOGY 9
Background to nanotechnology: Types of nanotechnology and nanomachines – periodic
table – atomic structure – molecules and phases – energy – molecular and atomic size –
surface and dimensional space – top down and bottom up; Molecular Nanotechnology:
Electron microscope – scanning electron microscope – atomic force microscope –
scanning tunnelling microscope – nanomanipulator – nanotweezers – atom manipulation
– nanodots – self assembly – dip pen nanolithography. Nanomaterials: preparation –
plasma arcing – chemical vapor deposition – sol-gels – electrodeposition – ball milling –
applications of nanomaterials;
UNIT II FUNDAMENTALS OF NANOELECTRONICS 9
Fundamentals of logic devices:- Requirements – dynamic properties – threshold gates;
physical limits to computations; concepts of logic devices:- classifications – two terminal
devices – field effect devices – coulomb blockade devices – spintronics – quantum
cellular automata – quantum computing – DNA computer; performance of information
processing systems;- basic binary operations, measure of performance processing
capability of biological neurons – performance estimation for the human brain. Ultimate
computation:- power dissipation limit – dissipation in reversible computation – the
ultimate computer.
UNIT III SILICON MOSFETs & QUANTUM TRANSPORT DEVICES 9
Silicon MOSFETS - Novel materials and alternate concepts:- fundamentals of MOSFET
Devices- scaling rules – silicon-dioxide based gate dielectrics – metal gates – junctions
& contacts – advanced MOSFET concepts.
Quantum transport devices based on resonant tunneling:- Electron tunneling – resonant
tunneling diodes – resonant tunneling devices; Single electron devices for logic
applications:- Single electron devices – applications of single electron devices to logic
circuits.
UNIT IV CARBON NANOTUBES 9
Carbon Nanotube: Fullerenes - types of nanotubes – formation of nanotubes –
assemblies – purification of carbon nanotubes – electronic propertics – synthesis of
carbon nanotubes – carbon nanotube interconnects – carbon nanotube FETs –
100
Nanotube for memory applications – prospects of an all carbon nanotube
nanoelectronics.
UNIT V MOLECULAR ELECTRONICS 9
Electrodes & contacts – functions – molecular electronic devices – first test systems –
simulation and circuit design – fabrication; Future applications: MEMS – robots – random
access memory – mass storage devices.
TOTAL: 45 PERIODS
TEXTBOOKS
1. Michael Wilson, Kamali Kannangara, Geoff Smith, Michelle Simmons and Burkhard
Raguse, Nanotechnology: Basic Science and Emerging Technologies, Chapman &
Hall / CRC, 2002
2. T. Pradeep, NANO: The Essentials – Understanding Nanoscience and
Nanotechnology, TMH, 2007
3. Rainer Waser (Ed.), Nanoelectronics and Information Technology: Advanced
Electronic Materials and Novel Devices, Wiley-VCH, 2003

EC2037 MULTIMEDIA COMPRESSION AND COMMUNICATION SYLLABUS | ANNA UNIVERSITY BE ECE 7TH SEMESTER SYLLABUS REGULATION 2008 2011-2012


EC2037 MULTIMEDIA COMPRESSION AND COMMUNICATION SYLLABUS | ANNA UNIVERSITY BE ECE 7TH SEMESTER SYLLABUS REGULATION 2008 2011-2012 BELOW IS THE ANNA UNIVERSITY SEVENTH SEMESTER BE ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT SYLLABUS IT IS APPLICABLE FOR ALL STUDENTS ADMITTED IN THE YEAR 2011-2012 (ANNA UNIVERSITY CHENNAI,TRICHY,MADURAI,TIRUNELVELI,COIMBATORE), 2008 REGULATION OF ANNA UNIVERSITY CHENNAI AND STUDENTS ADMITTED IN ANNA UNIVERSITY CHENNAI DURING 2009
EC2037 MULTIMEDIA COMPRESSION AND COMMUNICATION L T P C
3 0 0 3
AIM
To introduce the fundamental concepts of information theory.
OBJECTIVES
 To have a complete understanding of error–control coding.
 To understand encoding and decoding of digital data streams.
 To introduce methods for the generation of these codes and their decoding
techniques.
 To have a detailed knowledge of compression and decompression techniques.
 To introduce the concepts of multimedia communication.
UNIT I MULTIMEDIA COMPONENTS 9
Introduction - Multimedia skills - Multimedia components and their chacracteristics -
Text, sound, images, graphics, animation, video, hardware.
UNIT II AUDIO AND VIDEO COMPRESSION 9
Audio compression–DPCM-Adaptive PCM –adaptive predictive coding-linear Predictive
coding-code excited LPC-perpetual coding Video compression –principles-H.261-H.263-
MPEG 1, 2, 4.
UNIT III TEXT AND IMAGE COMPRESSION 9
Compression principles-source encoders and destination encoders-lossless and lossy
compression-entropy encoding –source encoding -text compression –static Huffman
coding dynamic coding –arithmetic coding –Lempel ziv-welsh Compression-image
compression
UNIT IV VOIP TECHNOLOGY 9
Basics of IP transport, VoIP challenges, H.323/ SIP –Network Architecture, Protocols,
Call establishment and release, VoIP and SS7, Quality of Service- CODEC Methods-
VOIP applicability
UNIT V MULTIMEDIA NETWORKING 9
Multimedia networking -Applications-streamed stored and audio-making the best Effort
service-protocols for real time interactive Applications-distributing multimedia-beyond
best effort service-secluding and policing Mechanisms-integrated services-differentiated
Services-RSVP.
TEXT BOOKS
1. Fred HAlshall “Multimedia communication - applications, networks, protocols and
standards”, Pearson education, 2007.
2. Tay Vaughan, “Multideai: making it work”, 7/e, TMH 2007
99
3. Kurose and W.Ross” Computer Networking “a Top down approach, Pearson
education.
REFERENCES
1. Marcus goncalves “Voice over IP Networks”, Mcgaraw hill
2. KR. Rao,Z S Bojkovic, D A Milovanovic, “Multimedia Communication Systems:
Techniques, Standards, and Networks”, Pearson Education 2007
3. R. Steimnetz, K. Nahrstedt, “Multimedia Computing, Communications and
Applications”, Pearson Education
4. Ranjan Parekh, “Principles of Multimedia”, TMH 2006

EC2036 INFORMATION THEORY SYLLABUS | ANNA UNIVERSITY BE ECE 7TH SEMESTER SYLLABUS REGULATION 2008 2011-2012


EC2036 INFORMATION THEORY SYLLABUS | ANNA UNIVERSITY BE ECE 7TH SEMESTER SYLLABUS REGULATION 2008 2011-2012 BELOW IS THE ANNA UNIVERSITY SEVENTH SEMESTER BE ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT SYLLABUS IT IS APPLICABLE FOR ALL STUDENTS ADMITTED IN THE YEAR 2011-2012 (ANNA UNIVERSITY CHENNAI,TRICHY,MADURAI,TIRUNELVELI,COIMBATORE), 2008 REGULATION OF ANNA UNIVERSITY CHENNAI AND STUDENTS ADMITTED IN ANNA UNIVERSITY CHENNAI DURING 2009
EC2036 INFORMATION THEORY L T P C
3 0 0 3
AIM
To introduce the fundamental concepts of information theory.
OBJECTIVES
 To have a complete understanding of error–control coding.
 To understand encoding and decoding of digital data streams.
 To introduce methods for the generation of these codes and their decoding
techniques.
 To have a detailed knowledge of compression and decompression techniques.
 To introduce the concepts of multimedia communication.
UNIT I QUANTITATIVE STUDY OF INFORMATION 8
Basic inequalities, Entropy, Kullback-Leibler distance, Mutual information, Bounds on
entropy, Fisher information , Cramer Rao inequality, Second law of thermodynamics ,
Sufficient statistic , Entropy rates of a Stochastic process
UNIT II CAPACITY OF NOISELESS CHANNEL 8
Fundamental theorem for a noiseless channel ,Data compression , Kraft inequality ,
Shannon-Fano codes , Huffman codes , Asymptotic equipartition , Rate distortion theory
UNIT III CHANNEL CAPACITY 9
Properties of channel capacity , Jointly typical sequences , Channel Coding Theorem,
converse to channel coding theorem, Joint source channel coding theorem ,
UNIT IV DIFFERENTIAL ENTROPY AND GAUSSIAN CHANNEL 9
AEP for continuous random variables, relationship between continuous and discrete
entropy, properties of differential entropy, Gaussian channel definitions, converse to
coding theorem for Gaussian channel, channels with colored noise, Gaussian channels
with feedback .
UNIT V NETWORK INFORMATION THEORY 11
Gaussian multiple user channels , Multiple access channel , Encoding of correlated
sources , Broadcast channel , Relay channel , Source coding and rate distortion with
side information , General multi-terminal networks.
TOTAL : 45 PERIODS
TEXT BOOK
1. Elements of Information theory – Thomas Cover, Joy Thomas : Wiley 1999
98
REFERENCE
1. Information theory, inference & learning algorithms – David Mackay year?

EC2035 CRYPTOGRAPHY AND NETWORK SECURITY SYLLABUS | ANNA UNIVERSITY BE ECE 7TH SEMESTER SYLLABUS REGULATION 2008 2011-2012


EC2035 CRYPTOGRAPHY AND NETWORK SECURITY SYLLABUS | ANNA UNIVERSITY BE ECE 7TH SEMESTER SYLLABUS REGULATION 2008 2011-2012 BELOW IS THE ANNA UNIVERSITY SEVENTH SEMESTER BE ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT SYLLABUS IT IS APPLICABLE FOR ALL STUDENTS ADMITTED IN THE YEAR 2011-2012 (ANNA UNIVERSITY CHENNAI,TRICHY,MADURAI,TIRUNELVELI,COIMBATORE), 2008 REGULATION OF ANNA UNIVERSITY CHENNAI AND STUDENTS ADMITTED IN ANNA UNIVERSITY CHENNAI DURING 2009
EC2035 CRYPTOGRAPHY AND NETWORK SECURITY L T P C
3 0 0 3
96
AIM
To understand the principles of encryption algorithms; conventional and public key
cryptography. To have a detailed knowledge about authentication, hash functions and
application level security mechanisms.
OBJECTIVES
 To know the methods of conventional encryption.
 To understand the concepts of public key encryption and number theory
 To understand authentication and Hash functions.
 To know the network security tools and applications.
 To understand the system level security used.
UNIT I INTRODUCTION 10
OSI Security Architecture - Classical Encryption techniques – Cipher Principles – Data
Encryption Standard – Block Cipher Design Principles and Modes of Operation -
Evaluation criteria for AES – AES Cipher – Triple DES – Placement of Encryption
Function – Traffic Confidentiality
UNIT II PUBLIC KEY CRYPTOGRAPHY 10
Key Management - Diffie-Hellman key Exchange – Elliptic Curve Architecture and
Cryptography - Introduction to Number Theory – Confidentiality using Symmetric
Encryption – Public Key Cryptography and RSA.
UNIT III AUTHENTICATION AND HASH FUNCTION 9
Authentication requirements – Authentication functions – Message Authentication Codes
– Hash Functions – Security of Hash Functions and MACs – MD5 message Digest
algorithm - Secure Hash Algorithm – RIPEMD – HMAC Digital Signatures –
Authentication Protocols – Digital Signature Standard
UNIT IV NETWORK SECURITY 8
Authentication Applications: Kerberos – X.509 Authentication Service – Electronic Mail
Security – PGP – S/MIME - IP Security – Web Security.
UNIT V SYSTEM LEVEL SECURITY 8
Intrusion detection – password management – Viruses and related Threats – Virus
Counter measures – Firewall Design Principles – Trusted Systems.
TOTAL : 45 PERIODS
TEXT BOOKS
1. William Stallings, “Cryptography And Network Security – Principles and Practices”,
Pearson Education, Third Edition, 2003.
2. Behrouz A. Foruzan, “Cryptography and Network Security”, Tata McGraw-Hill, 2007
REFERENCES
1. Bruce Schneier, “Applied Cryptography”, John Wiley & Sons Inc, 2001.
97
2. Charles B. Pfleeger, Shari Lawrence Pfleeger, “Security in Computing”, Third Edition,
Pearson Education, 2003
3. Wade Trappe and Lawrence C. Washington , “ Introduction to Cryptography with
4. coding theory” , Pearson Education, 2007.
5. Wenbo Mao, “ Modern Cryptography Theory and Practice” , Pearson Education,
2007
6. Thomas Calabrese, “Information Security Intelligence : Cryptographic Principles and
Applications”, Thomson Delmar Learning,2006.
7. Atul Kahate, “Cryptography and Network Security”, Tata McGraw-Hill, 2003.

GE2022 TOTAL QUALITY MANAGEMENT SYLLABUS | ANNA UNIVERSITY BE ECE 7TH SEMESTER SYLLABUS REGULATION 2008 2011-2012


GE2022 TOTAL QUALITY MANAGEMENT SYLLABUS | ANNA UNIVERSITY BE ECE 7TH SEMESTER SYLLABUS REGULATION 2008 2011-2012 BELOW IS THE ANNA UNIVERSITY SEVENTH SEMESTER BE ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT SYLLABUS IT IS APPLICABLE FOR ALL STUDENTS ADMITTED IN THE YEAR 2011-2012 (ANNA UNIVERSITY CHENNAI,TRICHY,MADURAI,TIRUNELVELI,COIMBATORE), 2008 REGULATION OF ANNA UNIVERSITY CHENNAI AND STUDENTS ADMITTED IN ANNA UNIVERSITY CHENNAI DURING 2009
GE2022 TOTAL QUALITY MANAGEMENT L T P C
3 0 0 3
95
UNIT I INTRODUCTION 9
Introduction - Need for quality - Evolution of quality - Definition of quality - Dimensions of
manufacturing and service quality - Basic concepts of TQM - Definition of TQM – TQM
Framework - Contributions of Deming, Juran and Crosby – Barriers to TQM.
UNIT II TQM PRINCIPLES 9
Leadership – Strategic quality planning, Quality statements - Customer focus –
Customer orientation, Customer satisfaction, Customer complaints, Customer retention -
Employee involvement – Motivation, Empowerment, Team and Teamwork, Recognition
and Reward, Performance appraisal - Continuous process improvement – PDSA cycle,
5s, Kaizen - Supplier partnership – Partnering, Supplier selection, Supplier Rating.
UNIT III TQM TOOLS & TECHNIQUES I 9
The seven traditional tools of quality – New management tools – Six-sigma: Concepts,
methodology, applications to manufacturing, service sector including IT – Bench marking
– Reason to bench mark, Bench marking process – FMEA – Stages, Types.
UNIT IV TQM TOOLS & TECHNIQUES II 9
Quality circles – Quality Function Deployment (QFD) – Taguchi quality loss function –
TPM – Concepts, improvement needs – Cost of Quality – Performance measures.
UNIT V QUALITY SYSTEMS 9
Need for ISO 9000- ISO 9000-2000 Quality System – Elements, Documentation, Quality
auditing- QS 9000 – ISO 14000 – Concepts, Requirements and Benefits – Case studies
of TQM implementation in manufacturing and service sectors including IT.
TOTAL : 45 PERIODS
TEXT BOOK
1. Dale H.Besterfiled, et at., “Total Quality Management”, Pearson Education Asia, 3rd
Edition, Indian Reprint (2006).
REFERENCES
1. James R. Evans and William M. Lindsay, “The Management and Control of Quality”,
6th Edition, South-Western (Thomson Learning), 2005.
2. Oakland, J.S., “TQM – Text with Cases”, Butterworth – Heinemann Ltd., Oxford, 3rd
Edition, 2003.
3. Suganthi,L and Anand Samuel, “Total Quality Management”, Prentice Hall (India)
Pvt. Ltd.,2006.
4. Janakiraman, B and Gopal, R.K, “Total Quality Management – Text and Cases”,
Prentice Hall (India) Pvt. Ltd., 2006.

CS2053 SOFT COMPUTING SYLLABUS | ANNA UNIVERSITY BE ECE 7TH SEMESTER SYLLABUS REGULATION 2008 2011-2012


CS2053 SOFT COMPUTING SYLLABUS | ANNA UNIVERSITY BE ECE 7TH SEMESTER SYLLABUS REGULATION 2008 2011-2012 BELOW IS THE ANNA UNIVERSITY SEVENTH SEMESTER BE ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT SYLLABUS IT IS APPLICABLE FOR ALL STUDENTS ADMITTED IN THE YEAR 2011-2012 (ANNA UNIVERSITY CHENNAI,TRICHY,MADURAI,TIRUNELVELI,COIMBATORE), 2008 REGULATION OF ANNA UNIVERSITY CHENNAI AND STUDENTS ADMITTED IN ANNA UNIVERSITY CHENNAI DURING 2009
CS2053 SOFT COMPUTING L T P C
3 0 0 3
94
UNIT I FUZZY SET THEORY 10
Introduction to Neuro – Fuzzy and Soft Computing – Fuzzy Sets – Basic Definition and
Terminology – Set-theoretic Operations – Member Function Formulation and
Parameterization – Fuzzy Rules and Fuzzy Reasoning – Extension Principle and Fuzzy
Relations – Fuzzy If-Then Rules – Fuzzy Reasoning – Fuzzy Inference Systems –
Mamdani Fuzzy Models – Sugeno Fuzzy Models – Tsukamoto Fuzzy Models – Input
Space Partitioning and Fuzzy Modeling.
UNIT II OPTIMIZATION 8
Derivative-based Optimization – Descent Methods – The Method of Steepest Descent –
Classical Newton’s Method – Step Size Determination – Derivative-free Optimization –
Genetic Algorithms – Simulated Annealing – Random Search – Downhill Simplex
Search.
UNIT III ARTIFICIAL INTELLIGENCE 10
Introduction, Knowledge Representation – Reasoning, Issues and Acquisition:
Prepositional and Predicate Calculus Rule Based knowledge Representation Symbolic
Reasoning Under Uncertainity Basic knowledge Representation Issues Knowledge
acquisition – Heuristic Search: Techniques for Heuristic search Heuristic Classification -
State Space Search: Strategies Implementation of Graph Search Search based on
Recursion Patent-directed Search Production System and Learning.
UNIT IV NEURO FUZZY MODELING 9
Adaptive Neuro-Fuzzy Inference Systems – Architecture – Hybrid Learning Algorithm –
Learning Methods that Cross-fertilize ANFIS and RBFN – Coactive Neuro Fuzzy
Modeling – Framework Neuron Functions for Adaptive Networks – Neuro Fuzzy
Spectrum.
UNIT V APPLICATIONS OF COMPUTATIONAL INTELLIGENCE 8
Printed Character Recognition – Inverse Kinematics Problems – Automobile Fuel
Efficiency Prediction – Soft Computing for Color Recipe Prediction.
TOTAL: 45 PERIODS
TEXT BOOKS
1. J.S.R.Jang, C.T.Sun and E.Mizutani, “Neuro-Fuzzy and Soft Computing”, PHI, 2004,
Pearson Education 2004.
2. N.P.Padhy, “Artificial Intelligence and Intelligent Systems”, Oxford University Press,
2006.
REFERENCES
1. Elaine Rich & Kevin Knight, Artificial Intelligence, Second Edition, Tata Mcgraw Hill
Publishing Comp., 2006, New Delhi.
2. Timothy J.Ross, “Fuzzy Logic with Engineering Applications”, McGraw-Hill, 1997.
3. Davis E.Goldberg, “Genetic Algorithms: Search, Optimization and Machine
Learning”, Addison Wesley, N.Y., 1989.
4. S. Rajasekaran and G.A.V.Pai, “Neural Networks, Fuzzy Logic and Genetic
Algorithms”, PHI, 2003.
5. R.Eberhart, P.Simpson and R.Dobbins, “Computational Intelligence - PC Tools”, AP
Professional, Boston, 1996.
6. Amit Konar, “Artificial Intelligence and Soft Computing Behaviour and Cognitive
model of the human brain”, CRC Press, 2008.

EC2038 NANO ELECTRONICS SYLLABUS | ANNA UNIVERSITY BE ECE 7TH SEMESTER SYLLABUS REGULATION 2008 2011-2012


EC2038 NANO ELECTRONICS SYLLABUS | ANNA UNIVERSITY BE ECE 7TH SEMESTER SYLLABUS REGULATION 2008 2011-2012 BELOW IS THE ANNA UNIVERSITY SEVENTH SEMESTER BE ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT SYLLABUS IT IS APPLICABLE FOR ALL STUDENTS ADMITTED IN THE YEAR 2011-2012 (ANNA UNIVERSITY CHENNAI,TRICHY,MADURAI,TIRUNELVELI,COIMBATORE), 2008 REGULATION OF ANNA UNIVERSITY CHENNAI AND STUDENTS ADMITTED IN ANNA UNIVERSITY CHENNAI DURING 2009
EC2038 NANO ELECTRONICS L T P C
3 0 0 3
UNIT I INTRODUCTION TO NANOTECHNOLOGY 9
93
Background to nanotechnology: Types of nanotechnology and nanomachines – periodic
table – atomic structure – molecules and phases – energy – molecular and atomic size –
surface and dimensional space – top down and bottom up; Molecular Nanotechnology:
Electron microscope – scanning electron microscope – atomic force microscope –
scanning tunnelling microscope – nanomanipulator – nanotweezers – atom manipulation
– nanodots – self assembly – dip pen nanolithography. Nanomaterials: preparation –
plasma arcing – chemical vapor deposition – sol-gels – electrodeposition – ball milling –
applications of nanomaterials;
UNIT II FUNDAMENTALS OF NANOELECTRONICS 9
Fundamentals of logic devices:- Requirements – dynamic properties – threshold gates;
physical limits to computations; concepts of logic devices:- classifications – two terminal
devices – field effect devices – coulomb blockade devices – spintronics – quantum
cellular automata – quantum computing – DNA computer; performance of information
processing systems;- basic binary operations, measure of performance processing
capability of biological neurons – performance estimation for the human brain. Ultimate
computation:- power dissipation limit – dissipation in reversible computation – the
ultimate computer.
UNIT III SILICON MOSFETs & QUANTUM TRANSPORT DEVICES 9
Silicon MOSFETS - Novel materials and alternate concepts:- fundamentals of MOSFET
Devices- scaling rules – silicon-dioxide based gate dielectrics – metal gates – junctions
& contacts – advanced MOSFET concepts.
Quantum transport devices based on resonant tunneling:- Electron tunneling – resonant
tunneling diodes – resonant tunneling devices; Single electron devices for logic
applications:- Single electron devices – applications of single electron devices to logic
circuits.
UNIT IV CARBON NANOTUBES 9
Carbon Nanotube: Fullerenes - types of nanotubes – formation of nanotubes –
assemblies – purification of carbon nanotubes – electronic propertics – synthesis of
carbon nanotubes – carbon nanotube interconnects – carbon nanotube FETs –
Nanotube for memory applications – prospects of an all carbon nanotube
nanoelectronics.
UNIT V MOLECULAR ELECTRONICS 9
Electrodes & contacts – functions – molecular electronic devices – first test systems –
simulation and circuit design – fabrication; Future applications: MEMS – robots – random
access memory – mass storage devices.
TOTAL: 45 PERIODS
TEXTBOOKS
1. Michael Wilson, Kamali Kannangara, Geoff Smith, Michelle Simmons and Burkhard
2. Raguse, Nanotechnology: Basic Science and Emerging Technologies, Chapman &
Hall / CRC, 2002
3. T. Pradeep, NANO: The Essentials – Understanding Nanoscience and
Nanotechnology, TMH, 2007
4. Rainer Waser (Ed.), Nanoelectronics and Information Technology: Advanced
Electronic Materials and Novel Devices, Wiley-VCH, 2003

EC2034 TELEVISION AND VIDEO ENGINEERING SYLLABUS | ANNA UNIVERSITY BE ECE 7TH SEMESTER SYLLABUS REGULATION 2008 2011-2012


EC2034 TELEVISION AND VIDEO ENGINEERING SYLLABUS | ANNA UNIVERSITY BE ECE 7TH SEMESTER SYLLABUS REGULATION 2008 2011-2012 BELOW IS THE ANNA UNIVERSITY SEVENTH SEMESTER BE ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT SYLLABUS IT IS APPLICABLE FOR ALL STUDENTS ADMITTED IN THE YEAR 2011-2012 (ANNA UNIVERSITY CHENNAI,TRICHY,MADURAI,TIRUNELVELI,COIMBATORE), 2008 REGULATION OF ANNA UNIVERSITY CHENNAI AND STUDENTS ADMITTED IN ANNA UNIVERSITY CHENNAI DURING 2009
EC2034 TELEVISION AND VIDEO ENGINEERING L T P C
3 0 0 3
AIM
Television Technology has now become a vital tool to the information revolution that is
sweeping across the countries of the world. The syllabus aims at a comprehensive
coverage of Television Systems with all the new developments in Television Engineering
OBJECTIVES
 To study the analysis and synthesis of TV Pictures, Composite Video Signal,
Receiver Picture Tubes and Television Camera Tubes
 To study the principles of Monochrome Television Transmitter and Receiver
systems.
 To study the various Color Television systems with a greater emphasis on PAL
system.
 To study the advanced topics in Television systems and Video Engineering
UNIT I FUNDAMENTALS OF TELEVISION 9
Aspect ratio-Image continuity-Number of scanning lines-Interlaced scanning-Picture
resolution-Camera tubes-Image Orthicon-Vidicon- Plumbicon- Silicon Diode Array
Vidicon- Solid-state Image scanners- Monochrome picture tubes- Composite video
92
signal- video signal dimension-horizontal sync. Composition-vertical sync. Detailsfunctions
of vertical pulse train- Scanning sequence details. Picture signal transmissionpositive
and negative modulation- VSB transmission- Sound signal transmission-
Standard channel bandwidth.
UNIT II MONOCHROME TELEVISION TRANSMITTER AND RECEIVER 9
TV transmitter-TV signal Propagation- Interference- TV Transmission Antennas-
Monochrome TV receiver- RF tuner- UHF, VHF tuner-Digital tuning techniques-AFT-IF
subsystems-AGC Noise cancellation-Video and Sound inter-carrier detection-Vision IF
subsystem- DC re-insertion-Video amplifier circuits-Sync operation- typical sync
processing circuits-Deflection current waveforms, Deflection oscillators- Frame
deflection circuits- requirements- Line deflection circuits-EHT generation-Receiver
antennas.
UNIT III ESSENTIALS OF COLOUR TELEVISION 9
Compatibility- Colour perception-Three colour theory- Luminance, Hue and saturation-
Colour television cameras-Values of luminance and colour difference signals-Colour
television display tubes-Delta-gun Precision-in-line and Trinitron colour picture tubes-
Purity and convergence- Purity and static and Dynamic convergence adjustments-
Pincushion-correction techniques-Automatic degaussing circuit- Gray scale trackingcolour
signal transmission- Bandwidth-Modulation of colour difference signals-Weighting
factors-Formation of chrominance signal.
UNIT IV COLOUR TELEVISION SYSTEMS 9
NTSC colour TV systems-SECAM system- PAL colour TV systems- Cancellation of
phase errors-PAL-D Colour system-PAL coder-PAL-Decoder receiver-Chromo signal
amplifier-separation of U and V signals-colour burst separation-Burst phase
Discriminator-ACC amplifier-Reference Oscillator-Ident and colour killer circuits-U and V
demodulators- Colour signal matrixing. Sound in TV
UNIT V ADVANCED TELEVISION SYSTEMS 9
Satellite TV technology-Geo Stationary Satellites-Satellite Electronics-Domestic
Broadcast System-Cable TV-Cable Signal Sources-Cable Signal Processing,
Distribution & Scrambling- Video Recording-VCR Electronics-Video Home Formats-
Video Disc recording and playback-DVD Players-Tele Text Signal coding and broadcast
receiver- Digital television-Transmission and reception –Projection television-Flat panel
display TV receivers-LCD and Plasma screen receivers-3DTV-EDTV.
TOTAL = 45 PERIODS
TEXTBOOK
1. R.R.Gulati, “Monochrome Television Practice, Principles, Technology and servicing.”
Third Edition 2006, New Age International (P) Publishers.
2. R.R.Gulati, Monochrome & Color Television, New Age International Publisher, 2003.
REFERENCES
1. A.M Dhake, “Television and Video Engineering”, 2nd ed., TMH, 2003.
2. R.P.Bali, Color Television, Theory and Practice, Tata McGraw-Hill, 1994