EC2205 ELECTRONIC CIRCUITS I SYLLABUS | ANNA UNIVERSITY ECE THIRD SEMESTER SYLLABUS REGULATION 2008 2011-2012
BELOW IS THE ANNA UNIVERSITY 3RD SEMESTER BE ELECTRONICS AND COMMUNICATION DEPARTMENT SYLLABUS IT IS APPLICABLE FOR ALL STUDENTS ADMITTED IN THE YEAR 2011-2012(ANNA UNIVERSITY CHENNAI,TRICHY,MADURAI,TIRUNELVELI,COIMBATORE), 2008 REGULATION OF ANNA UNIVERSITY CHENNAI AND STUDENTS ADMITTED IN ANNA UNIVERSITY CHENNAI DURING 2009.
EC 2205 ELECTRONIC CIRCUITS I SYLLABUS DOWNLOAD L T P C 3 1 0 4
AIM
The aim of this course is to familiarize the student with the analysis and design of basic
transistor Amplifier circuits and power supplies.
OBJECTIVE
On completion of this course the student will understand
The methods of biasing transistors
Design of simple amplifier circuits
Midband analysis of amplifier circuits using small - signal equivalent circuits to
determine gain input impedance and output impedance
Method of calculating cutoff frequencies and to determine bandwidth
Design of power amplifiers
Analysis and design of power supplies.
UNIT I TRANSISTOR BIAS STABILITY 12
29
BJT – Need for biasing – Stability factor - Fixed bias circuit, Load line and quiescent
point. Variation of quiescent point due to FE h variation within manufacturers tolerance -
Stability factors - Different types of biasing circuits - Method of stabilizing the Q point -
Advantage of Self bias (voltage divider bias) over other types of biasing, Bias
compensation – Diode, Thermister and Sensistor compensations, Biasing the FET and
MOSFET.
UNIT II MIDBAND ANALYSIS OF SMALL SIGNAL AMPLIFIERS 12
CE, CB and CC amplifiers - Method of drawing small-signal equivalent circuit - Midband
analysis of various types of single stage amplifiers to obtain gain, input impedance and
output impedance - Miller’s theorem - Comparison of CB, CE and CC amplifiers and
their uses - Methods of increasing input impedance using Darlington connection and
bootstrapping - CS, CG and CD (FET) amplifiers - Multistage amplifiers.
Basic emitter coupled differential amplifier circuit - Bisection theorem. Differential gain –
CMRR - Use of constant current circuit to improve CMRR - Derivation of transfer
characteristic.
UNIT III FREQUENCY RESPONSE OF AMPLIFIERS 12
General shape of frequency response of amplifiers - Definition of cutoff frequencies and
bandwidth - Low frequency analysis of amplifiers to obtain lower cutoff frequency Hybrid
– equivalent circuit of BJTs - High frequency analysis of BJT amplifiers to obtain
upper cutoff frequency – Gain Bandwidth Product - High frequency equivalent circuit of
FETs - High frequency analysis of FET amplifiers - Gain-bandwidth product of FETs -
General expression for frequency response of multistage amplifiers - Calculation of
overall upper and lower cutoff frequencies of multistage amplifiers - Amplifier rise time
and sag and their relation to cutoff frequencies.
UNIT IV LARGE SIGNAL AMPLIFIERS 12
Classification of amplifiers, Class A large signal amplifiers, second harmonic distortion,
higher order harmonic distortion, transformer-coupled class A audio power amplifier –
efficiency of Class A amplifiers. Class B amplifier – efficiency - push-pull amplifier -
distortion in amplifiers - complementary-symmetry (Class B) push-pull amplifier, Class C,
Class D amplifier – Class S amplifier – MOSFET power amplifier, Thermal stability and
heat sink.
UNIT V RECTIFIERS AND POWER SUPPLIES 12
Classification of power supplies, Rectifiers - Half-wave, full-wave and bridge rectifiers
with resistive load. Analysis for dc V and ripple voltage with C, L, LC and CLC filters.
Voltage multipliers, Voltage regulators - Zener diode regulator, principles of obtaining a
regulated power supply, regulator with current limiting, Over voltage protection, Switched
mode power supply (SMPS), Power control using SCR.
TUTORIAL = 15 TOTAL : 60 PERIODS
TEXT BOOKS
1. Millman J and Halkias .C., Integrated Electronics, TMH, 2007.
2. S. Salivahanan, N. Suresh Kumar and A. Vallavaraj, Electronic Devices and Circuits,
2nd Edition, TMH, 2007.
REFERENCES
30
1. Robert L. Boylestad and Louis Nashelsky, Electronic Devices and Circuit Theory, 9th
Edition, Pearson Education / PHI, 2007.
2. David A. Bell, Electronic Devices & Circuits, 4th Ediion, PHI, 2007
3. Floyd, Electronic Devices, Sixth Edition, Pearson Education, 2002.
4. I.J. Nagrath, Electronic Devices and Circuits, PHI, 2007.
5. Anwar A. Khan and Kanchan K. Dey, A First Course on Electronics, PHI, 2006.
6. B.P. Singh and Rekha Singh, Electronic Devices and Integrated Circuits, Pearson
Education, 2006.
7. Rashid M, Microelectronics Circuits, Thomson Learning, 2007.